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1. Introduction

Cluster analysis aims at solving the following very general problem,
which has numerous applications in the natural and social sciences as well as
in medicine and engineering: given a set X of N entities, often described by
measurements as points of the real d-dimensional space R?, find subsets of X
which are homogeneous and/or well-separated. Homogeneity means that enti-
ties in the same cluster must be similar and separation that entities in different
clusters must differ one from the other. These concepts can be made precise in
a variety of ways, which lead to as many clustering problems and even more
heuristic or exact algorithms. So, clustering is a vast subject. Good introduc-
tory texts are Kaufman and Rousseeuw (1990), Gordon (1981) and the survey
Jain, Murty and Flinn (1999); another more mathematical survey is Hansen and
Jaumard (1997).

In some rare cases, the criterion adopted expresses both homogeneity and
separation. This is so for minimization of the sum-of-squared distances from all
entities to the centroid of the cluster to which they belong. Indeed, minimizing
the within clusters sum-of-squares, a criterion of homogeneity, is tantamount to
maximizing the between clusters sum-of-squares, a criterion of separation. For
short, we will refer to this criterion as ”minimum sum-of-squares”.

A mathematical programming formulation of the minimum sum-of-
squares clustering problem is as follows:

min f(M, Z) = Z ZZU [ — my?

i=1 j=1

subject to

M

Y zy=1, j=1,2,...,N,

=1

z; €{0,1} ¢=1,2,...,M; 7=1,2,...,N,
where N
Z ‘: z. .x j
my =20 =12, M.
Zj:l 2ij

The N entities to be clustered are at given points z; = (z;1, Zj2,- .., Zjq) of
R forj = 1,...,N; M cluster centroids must be located at unknown points
m; € Refori = 1,..., M. The decision variable ;5 is equal to 1 if point

j is assigned to cluster 4, at a squared Euclidean distance ||z; — m;||? from
its centroid. It is well-known that condition z;; € {0,1} may be replaced by
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z;; € [0,1], since in an optimal solution, each entity belongs to the cluster with
the nearest centroid (ties being broken arbitrarily).

A combinatorial optimization formulation is as follows:

Let Pys = {C1, Ca, . .., Ci} denote a partition of X into M clusters (or
classes):

Ci#0 Yi=1,....M, CNC;j=0 Yi,j=1,...,M, i+

and
uM,c=X.
Let Py denote the set of all M-partitions of X. Then find Py, such that
M

where
2 2
A C)= > lmi—mif?,
flz;€C:
the sum of squared distances from entities of cluster C; to its centroid m;. Note
that Py, = (C{,C5,...,Cy,} is such that

C’i*:{ijX|zfj:1},

where (z;‘j) is the assignment matrix of the optimal solution of the mathematical
programming formulation.

Minimum sum-of-squares clustering is among the most central problems
of cluster analysis. It has been extensively studied since the sixties of last cen-
tury, leading to several hundred papers on exact or approximate algorithms and
their properties, as well as several thousand papers on generalizations and ap-
plications in various fields. A complete survey of this literature would require
a long paper in itself.

The best-known heuristic for minimum sum-of-squares clustering is Mac
Queen’s (1967) k-means. It proceeds by selecting a first set of M points as can-
didate centroid set, then alternately (i) assigning points of X to their closest
centroid and (ii) recomputing centroids of the clusters so-obtained, until stabil-
ity is attained.

Many variants of this scheme have been proposed. We find of particular
interest, that one recently proposed by Likas, Vlassis and Verbeek (2003). It
- advocates an incremental approach in which an initial solution for a partition in
M clusters is obtained by adding one point to the set of centroids of the best
points into M — 1 clusters obtained. This point is usually chosen among those
of X but the possibility of choosing a point of R? in general is also mentioned.
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Likas et al (2003) make a conjecture about the optimality of such a procedure.
Their method has already attracted much interest (Godin, Huguet, Gaertner and
Salmon 2004; Marques, Carvalho, Costa and Medeiros 2004; Pham, Dimov
and Nguyen 2004; Schenken, Last, Bunke and Kandel 2004; Tsingos, Gallo
and Drettakis 2004; Whitfield, Hall and Cannon 2004).

The purpose of the present paper is two-fold:

(i) to study the optimality of global k-means heuristics, first when a point of
X is added at each iteration, then when a point of R is chosen, thus
answering (in the negative) the conjecture of Likas et al.(2003).

(i1) to study empirically the version of Global k-means proposed by Likas et
al. (2003) and compare it with the recent j-means heuristic (Hansen and
Mladenovié 2001a).

The paper is organized as follows: complexity of minimum sum-of-
squares clustering is examined in the next section. A brief and selective survey
of heuristics and exact algorithms for that problem is given in Section 3. The
Global k-means and j-means heuristics are described in more details than other
methods as they form the subject matter of this paper. In Section 4 we discuss
for which values of M and d does global k-means always lead to an optimal
partition. An empirical comparison of Global k-means and j-means is reported
on in Section 5. Conclusions are drawn in Section 6. The rather technical proof
of our main result is given in the Appendix.

2. Complexity of Minimum Sum-of-squares Clustering

To the best of our knowledge the computational complexity of minimum
sum-of-squares clustering for general values of M and d is unknown. However,
several incorrect statements have been made about this problem being known to
be NP-hard (including one by two of the present authors in Hansen and Mlade-
novi¢ (2001a)). Reasons of these confusions are worth discussing.

First, in their classical book on Computers and Intractability, Garey and
Johnson (1979) mention in their list of NP-hard problems:

MINIMUM SUM-OF-SQUARES .

INSTANCE: Finite set A, a size s(a) € Z* for each a € A, positive integers
K <|A|and J.

QUESTION: Can A be partitioned into K disjoint sets A3, Ao, . .., Ag such that

i (Z s(a)>2§J.
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A close look at this statement shows it is not the same as, nor a particular
case of, the minimum sum-of-squares problem stated in the introduction.

Second, Briicker (1978) and Hansen and Delattre (1978) independently
proposed a graph-theoretical proof that Minimum diameter partitioning is NP-
hard (given dissimilarities between all pairs of entities, the diameter of a parti-
tion is the largest dissimilarity between a pair of entities in the same cluster).
The reduction is to chromatic number: given a graph G (V, E)) with vertex set V
and edge set £ and an integer M is G M —colorable (i.e., colorable in M colors
such that no pair of adjacent vertices receive the same color)? Taking dy; = 1
if {vg, v} € F and dy; = 0 otherwise expressed this problem as a minimum
diameter partitioning one: G is M-colorable is the optimum diameter is 0 and
notifitis 1.

Welch (1982) examined if this proof technique could be extended to show
NP-hardness of other clustering problems including minimum sum-of-squares
clustering. However, this neglects the fact that points belonging to R4 severely
restricts the possible values of the distances between them (e. g. one cannot have
dij = dj = 0 and dy, = 1, due to the triangle inequality).

If M and d are fixed, minimum sum-of-squares clustering can, in princi-
ple, be solved in polynomial time. Indeed, the number of bipartitions of X is
polynomial so X can be bipartitioned in all possible ways, then the operation
iterated M — 1 times on the clusters obtained. This is not practical for d > 4
(see Hansen, Jaumard and Mladenovié 1998).

If d = 1 the minimum sum-of-squares clustering problem can be solved
in O(N?M) time using dynamic programming as observed by several authors,
e.g. Bellman and Dreyfus (1962) and Rao (1971).

A hierarchical agglomerative clustering method for minimum sum of
squares clustering, known as Ward’s method, has been proposed by Ward (1963)
long ago and extensively applied (this paper is one of the most cited of the sci-
entific literature: over 2000 times). A hierarchical divisive method has been
developed more recently Hansen et al. (1998) and works well for small d, 1e.,
it can solve instances with N < 20,000 for d = 2, N < 1,000 for d = 3 and
N < 150 for d = 4. As all other hierarchical methods, these two suffer from
the defect that a non-optimal merging or splitting is never corrected. Therefore,
partitioning (i.e., non-hierarchical) algorithms and heuristics have been pro-
posed. A first branch-and-bound algorithm is presented in Koontz, Narendra
and Fukunaga (1975) and elaborated on in Diehr (1985) Recently, jointly us-
ing several tools from mathematical programming (column generation, interior
point, hyperbolic and quadratic 0-1 algorithms, together with Variable Neigh-
borhood Search heuristics and branch-and-bound) led to an exact solution of
problems with N < 150 (du Merle, Hansen, Jaumard and Mladenovié (2000),
including Fisher’s Iris (Anderson 1935, Fisher 1936). However, numerous data
sets have more than 150 entities.
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Many heuristics have been proposed for the minimum some-of-squares
clustering problem. The best known one is k-means (MacQueen 1967). It
proceeds from a seed solution consisting of M points mi, ma, ..., ma (not
necessarily belonging to X)) considered as tentative centroids, by alternatively:

(i) allocating each point to its closest centroid, thus obtaining an M -partition
C1,Cy,...,Cpy of X (where C; denotes the set of points closer to m;
than to any other m; with ¢ € {1,...,M};

(i) recomputing centroids m1, ma, . .., mys for the clusters C1,Co,...,Cys
so-obtained and returning to (i) until no more points change cluster.

Observe that in k-means, a cluster may, at some iteration, become empty, a
phenomenon known as degeneracy. It is then worthwhile to choose a point,
which does not yet coincide with a centroid, to replace the centroid of the cluster
which has become empty (Hansen and Mladenovi¢ 2001a).

Another heuristic for minimum sum-of-squares clustering (Spith 1985,
Hansen and Mladenovi¢ 2001a) consists at each iteration in moving an entity
from its cluster to another one in such a way that the objective function value
is most reduced. This is repeated until no more such move improves that value.
In this paper, we shall refer to that heuristic as A-means.

Usually, one allocation step (i) of k-means implies several reassignments
of entities. As noted in Hansen and Mladenovi¢ (2001), local minima obtained
by k-means may be.improved by h-means, while the converse is not true.

The k-means beuristic, despite being much used, has several defects: (a)
it stops in a local optimum which can be far from the optimum; examples show
the value obtained for large N and M can be several times the optimal one
(Hansen and Mladenovi¢ 2001a); (b) the solution obtained depends largely on
the seed solution used (see e.g. Pefia, Lozano and Larafiaga 1999); (c) comput-
ing time may be substantial for very large data sets, such as those considered in
data mining (other methods, however are even more time-consuming).

To alleviate, as far as possible, the defects (a) and (b) two new and rather
similar heuristics for minimum sum-of-squares clustering have recently been
proposed.

On the one hand, the heuristic j-means (for jump-means, Hansen and
Mladenovi¢ 2001a) extends k-means by adding a jump move, i.e., a point of X
where there is no centroid is chosen, considered as a new centroid, and replaces
that centroid among the M previous ones whose deletion augments least the
objective function value, all other centroids remaining fixed. All such possible
centroid-to-entity relocation moves define the jump neighborhood of the current
solution, which is systematically explored. Once the best (add,drop) pair is
found, the corresponding reassignments are performed, and possibly improved
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by k-means. The procedure is iterated until a local optimum for the jump neigh-
borhood is reached. While the h-means heuristic improves the search by re-
fining the allocation step (i) of k-means, j-means concentrates on improving
k-means’s location step (ii).

It is also possible to find the best add/drop pair in a more precise way by
using k-means (or at least its first iteration) after each add step, but, as explained
in Hansen and Mladenovi¢ (2001), in an efficient implementation, all the jump
neighborhoods can be explored in O(M N) operations, which is much less than
O(N) applications of k-means. Two variants of j-means are tested in Hansen
and Mladenovi¢ (2001): one that only reassigns entities after finding the best
add/drop pair (called j-means) and another that use k-means and then h-means
to improve that best add/drop solution (j-means+).

A more powerful extension of j-means is to embed it in the framework
of the Variable Neighborhood Search (VNS) metaheuristic (Mladenovié¢ and
Hansen 1997, Hansen and Mladenovi¢ 2001b). That metaheuristic exploits a
descent method such as j-means or j-means+ together with a systematic change
of neighborhoods within the search space. To that effect, given any solution
Py = {C1,Cs,...,Cup}, a set of neighborhoods Nyi(Pyy), No(Pypy), ...,
N, (Ppr) is defined. For minimum sum-of-squares clustering it correspond
to all possible sequences of 1,2,. .., kmqy centroid-to-entity relocation moves.
Once a local optimum Py is found by j-means, a solution P]’V[ is chosen ran-
domly in its first neighborhood N1(Pas) (or in other words one proceeds to a
jump move) and used as initial solution for a descent, using again j-means (or
Jj-means+). If the value of the locally optimal solution Py obtained at the end
of this descent is worse than the best-known one, or incumbent, one proceeds
to the random choice of a solution within the next neighborhood Ny ;1 (Pyy). If
this value is better, it is stored, together with P} and the search is recentered
around Pj’\jf. If neighborhood k. is reached without any improvement one be-
gins again at the first neighborhood, until a stopping condition (e.g. maximum
computing time, or number of iterations, or number of iterations since the last
improvement of the best known solution) is met.

Solutions obtained by j-means may be substantially better than those
obtained by multistart k-means, in which k-means is repeated from randomly
generated initial partitions ans the best result high, and (due to the fact that de-
scents from a perturbed local optimum are shorter than from a random solution)
obtained in less computing time Hansen and Mladenovi¢ 2001a).

On the other hand, the global k ~ means heuristic (Likas et al. 2003),
is an incremental approach which builds partitions of X into k = 1,2,...,M
clusters successively. At a current iteration, for k > 2, its steps are as follows:

(1) consider the centroids mi(k—1),ma(k—1),...,my_1(k—1) of the best
partition obtained at the previous iteration (into k — 1 clusters); -



294 P. Hansen, E. Ngai, B.K. Cheung and N. Mladenovié

(i1) add in turn, each point of X to this set of centroids, thus obtaining N
initial solutions with k points; apply k-means to each of them; keep the
best k-partition so-obtained and its centroids m; (k), ma(k), . .., mg(k);

(iii) augment k by 1 and return to (i) as long as k < M.

Note that, as the locally optimal partitions with k = 2,3, ..., M are kept,
one can apply tests (Milligan and Cooper 1985, Likas 2003) to determine the
best number of clusters without further effort.

Computing time of global k-means is fairly large, as M - N applications
of k-means are made; two procedures are proposed to reduce it (possibly at
the cost of obtaining less good solutions). In the first one, the effect of the
first iteration of k-means is evaluated for all possible additions of a new point;
then k-means is applied to the solution corresponding to the greatest first-step
reduction in objective function value (which is clearly a lower bound on the
total reduction obtained with k-means). This short-cut does not seem to affect
much the value of the best solution obtained. In the second one, which applies
to low-dimensional data, an efficient data structure for handling points known as
ak — d tree (Bentley 1991, Sproull 1991) is used to partition X into N’ << N
subsets; their centroids are used as initial points instead of the more numerous
points of X in the global k-means scheme.

Observe that the jump move of j-means and the addition of a point of X
in global k-means are fairly similar. This is even more so when one considers
a particular version of j-means introduced to study its relationship with the
greedy heuristic. In Hansen and Mladenovi¢ (2001a) it is noted that:

“...j-means can be viewed as an extended Greedy heuristic. [i.e.,
a heuristic performing the best move at every iteration, in a myopic
way]. Indeed, assume that all points are initially assigned to the
same cluster, i.e., all M centroids are located at the same far away
point (for example at origin). Then, in each iteration a new centroid
is added, and one deleted from the origin. However, the Greedy
heuristic stops when the number of origin centroids becomes zero,
while j-means could continue the search”.

Global k-means thus appears to be a version of the previous scheme in
which a larger effort is made in the choice of the new centroids, and none to
improve further the M -partition obtained at the last iteration.

Recently, Kanungo,Mount, Netanyahu, Piatko, Silverman and WU (2002)
proposed a single and practical approximation algorithm based on swapping
centers in and out which has 9 + ¢ approximation factor. Further results, in-
volving the spread of X, i.e., the ratio of its diameter to distance between its
two closest points are given in Har-Peled and Mazumdar (2004), and Har-Peled
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and Sadri (2005). Of particular interest are lower and upper bounds on the
number of iterations k-means.

3. Some Heuristics and Exact Algorithms for Minimum
Sum-of-squares Clustering

The minimum sum-of-squares clustering problem as well as the k-means
heuristic have been generalized in many ways. We mention a few:

(i) Generalized centroid: in his important early work on the method of “dy-
namic clusters” Diday (1972, 1974) proposed to replace the centroid of
a cluster by a more general set of points or a surface which would better
represent it. This can be done in many ways while keeping the essence of
the k-means heuristic at the center of the resolution method. Diday also
proposed to study “strong forms”, i.e., common subsets of entities within
the classes of the partitions obtained in several runs.

(i) Fuzzy clustering: instead of imposing that each point belong to one and
only one cluster, it may be allowed that it belong to several, with different
degrees of membership, summing to 1. The mathematical programming
model of the introduction is then modified by giving an exponent c;; €
(0,1) to each z;; in the objective function Bezdek (1980). Several variants
of k-means and j-means (Belacel, Hansen and Mladenovié, 2003) have
been proposed to solve this problem.

(iii) Expectation-maximization: the k-means heuristic can be generalized to
the extension of missing data, see Estivill-Castro and Yang (2004), for
thorough discussion.

(iv) Categorical and mixed data sets: when the data consist in categorical ob-
servations instead of measurements of real values, the k-modes heuristic
can be modified into a k-median heuristic e.g. Huang (1998): when both
categorical and real data are present one can compute a mode/centroid by
doing computation as above on real and categorical components of points
according to the centroid and median calculations.

(vi) On-line scheduling: large data set arriving in a continuous stream can
be classified by on-line extensions of k-means (Bermejo and Cabestany
2002; Bougeuettaya 1996; El-Sonbaty and Ismail 1998).

(v) Multicriteria clustering: (De Smet and Montano-Guzman 2004).



296 P. Hansen, E. Ngai, B.K. Cheung and N. Mladenovi¢

4. Some Small Hard to Solve Examples

The authors of the global k-means method comment on its ability to find
the optimal solution as follows (Likas et al., 2003):
“The rationale behind the proposed method is based on the following assump-
tion: an optimal clustering solution with & clusters can be obtained through
local search (using k-means) starting from an initial state with

e the k — 1 centers placed at optimal positions for the (k — 1) - clustering
problem and

e the remaining k** center placed at an appropriate position to be discov-
ered.”

Choice of position for the k** center leads to a further assumption:

“It is also reasonable to restrict the set of possible initial positions to the set X
of available data points”,

Then favorable experimental results, as compared with using numerous
random restarts of k-means, suggest to
“cautiously state that the proposed method is experimentally optimal (although
it is difficult to prove theoretically)”.

In this section we examine, through examples and propositions, for which
values of the number M of clusters and the dimension d of the space consid-
ered, do the assumptions necessarily hold. We first consider both assumptions
together; the more difficult case where only the first assumption is made, i.e.,
the initial position of the k** center is not restricted to X , will be examined
afterwards.

Example 1 Let N = 4, d = 2, z; = (0,1), z, = (1,0), z3 = (0,-1),
z4 = (—1,0) and M = 2 (see Figure ?? (a)). Fork = 1, C1 = {z1,%2, 23,24}
and my = (0,0) is the centroid.

For k& = 2, by symmetry, only one of the four points, say x1, needs to be
considered as initial position for msy. Then C; = {2, 23,24}, Co = {71}, (see
Figure ?? (b)). Computing centroids one gets mi = (~1/3,0) and mo = (1,0)
(see Figure ?? (c)). The error is 2[1% + (3)?] + (2)? = 8.

However, consider the partition C| = {z2, 23}, C) = {z1, 24}, which
has centroids m{ = ( %, ——%) and m), = (—%, %) (see Figure ?? (d)). The
error is then 4(%)2 = 2 and it is easily seen that this partition is optimal. So

in this case global k-means stops with an error exceeding the optimal value by
(8/3-2)/2 = 33.3%.
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Figure 1. Example 1.

Similar results hold for M > 2. Indeed, modifying Example ?? by
adding M — 2 points 25 = (4,0),26 = (7,0),..., 242 = (1 +3(M —2),0)
(see Figure ??) one gets an example for which the optimal (M — 1) - cluster-
ing is Cy = {1, 2, 23,74}, O3 = {z5}, C3 = {w6},..., Cur = {zar42},
my = (0,0),m3 = (4,0), mg = (7,0), ..., mpy_1 = (1+3(M —2),0), as the
additional points are sufficiently far from the others and between themselves to
form 1 entity clusters. The analysis done for Example ?? then carries over.

Moreover, as the d-dimensional Euclidean space R*C RY ford > d
the above example can be viewed as belonging to d’-space for any d’ > 2. If,
however, one wishes to have points in general position in d’ -space, this can be
achieved by (i) duplicating all points of Example ?? or its extension a sufficient
number of times to have at least d’ points, and (ii) perturbing very slightly the
first d’ points in turn along the 1%¢, 274, . d'th axis.

There remains an open case, i.e., d = 1. Note that in this case an O(N?3)
dynamic programming algorithm is available (Spith 1980). Nevertheless, let us
examine if the two assumptions hold.
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X4 m X2 m, A Xs My A X6

Figure 2. Example 1 modified for A/ > 2.

Example2 Let N =6, d =1, 21 =0, 20 =2, 23 = 4, 4 = 7, zs = 9,
e = 11 and M = 3 (see Figure ?? (a)). For k = 2 it is easily seen that
the best partition is C1, = {z1,12,23} and Cy = {z4, s, Te} with m} = 2
and mi = 9. The erroris 2-2 - (22) = 16 (see Figure ?? (b)). As there are
already centroids at xo and x5 the initial position for ms may be 11,3, T4
or zg. Consider z1. Then C3 = {z1}, C1 = {3,235}, Ca = {z4, 25,26},
m3 =0, m] =3, mj =9and the erroris 0+2 12 +2-22=9 (see Figure ??
(c)). Taking x3, T4 or x¢ as initial positions for the new center yields partitions
with classes containing 1 point, 2 points at distance 2 and 3 points with the
central one at distance 2 from each of the outer ones. So the error is the same
as in the first case.

However, consider the partition C] = {z1,22}, C) = {z3, 4}, C4 =
{zs5, 76} with centroids m] = 1, m}, = 5.5 and m} = 10. The error is then
2-12+2-(2.25)2 + 2 - 12 = 8.5 (see Figure ?? (d)). So, in this case, global
k-means stops with an error exceeding the optimal value by (9-8.5)/8.5 =5.98
%. Again, this example can be modified by adding points at sufficient distance
from those already chosen and one from another to obtain a counter-example
with M > 3.

Finally, a single case remains when initial points for the k%" centroid are
chosenin X: d = 1 and M = 2. For that case we have only been able to build
a counter-example with a very large number of points to cluster; all of these are
located at four distinct points of the real line.

Example3 Let N = 10010, d = 1, 1 = 29 = 23 = 0, T4 = 604, z5 =
e 210=902, 211 = ... z10010 = 1202 and M = 2 (see Figure ?? (a)). Then
my = (3.0 4 1.604 + 6.902 + 10000.1202) /10010 = 1201.40 and the error
with a single cluster is

3 - (1201.40)* + (597.40)2 + 6 - (299.40) + 10000(0.60)2 = 5,228, 414.8,



Analysis of Global k-Means 299

* * xz: X3= x4= Xs - x6= 2,a
0 2 4 7 9 1t
X X X X X X
‘e > 2:/=\3 Timd 3: 4= > 55/=\3 i ‘e 2,b
0 2 5 4 7 9 « 11
2
AN AN e A K, 2e
. > <o . >0\ .
0 mr 2 mF 4 7 o=

X X X X X X
1::,&:2: ‘e :/:_\: ‘e ° o :,_/'\<S= 2.d
0 m, 2 4 m, 7 9 m, 11
Figure 3. Example 2.
Taking z; = 0 as initial position for m,, a partition C1 =A{z4,..., 210010},

Cy = {z1,%3,23} is obtained as the distance between z; and x4 is 604 >
997.40, i.e. the distance between x4 and m,. By an easy computation m} =
1201.76 and no point changes cluster anymore. The error is 897,029 (see Fig-
ure ?? (b)). Taking x4 = 604, a partition C; = {z11,...,Z10010} and C} =
{z1,22,... ,Z10} is obtained as the distance between z4 and z5,26,..., 219
is 902 - 604 =298 < 1201.40 - 902 = 299.40, i.e., the distance between T10
and m;. By an easy computation m} = 1202, m3 = 601.6 and the error is
1,627,214 (see Figure ?? (c)).

Taking z5 = 902 or z1; = 1202 as initial position for 1y yields in
both cases the same partition as when taking 1 = 0 (up to a permutation of
indices in one case). That partition is the best one for global k-means. However,
consider the partition C] = {1, 29, 23,74} and Cy = {z5,76,. .. » £10010 }
with centroids m) = 151 and m/, = 1201.82. Then error is 813,288. So in
this case global k-means stops with an error exceeding the optimal value by
(897029-813288)/813288 = 10.30%.

We summarize results obtained up to now as follows:

Proposition 1 For all real spaces R, with d 2> 1 and all numbers of clusters
M > 2, there are instances of minimum sum-of-squares clustering such that
beginning with the M — 1 centroids of an optimal (M — 1)-partition and any
point x; € X, k-means never gets an optimal M -partition.

Let us now turn to the more general case in which the &% initial point can
be chosen anywhere in R and not only as a point of X. We then get a positive
result for M = 2.
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Figure 4. Example 3.

Proposition 2 For any minimum sum-of-squares clustering problem in R with
M = 2, there exists a point y € R% such that choosing y and the centroid of X
(with small perturbation in case of coincidence) as initial points k-means gives
an optimal clustering.

Proof. Assume not all points of X coincide (otherwise, partitioning is arbi-
trary). Consider an optimal solution with clusters C;, Cs and centroids m4 and
mg. Then the hyperplane H perpendicular to the line segment joining m; and
mg and passing through its middle separates the points from C from those of
Cs (Gower 1967); points on the hyperplane, if any, could be moved very slightly
towards their centroids. Then consider the centroid m; (1) of X and its sym-
metric y with respect to H. Assume first that (1) is not on H. Then choosing
m;(1) and y as initial centers gives the partition (Cy, C) (up to permutation of
indices). So k-means stops after one iteration with the optimal partition. Then
consider the case where m;(1) is on H; take initial centers m} and m/, on the
line-segment through m; (1) parallel to the line-segment joining m; and ms at
a small distance € from H on both sides. Again the optimal partition is obtained
after one iteration of k-means. a

Unfortunately, the proof of Proposition 2 is not constructive. Moreover,
if M > 3, again there are small hard to solve cases, which leads us to our main
result. Its proof, being rather technical, is relegated to the Appendix.

Theorem 1 For all real spaces R%, with d > 1 and all numbers of clusters
M > 3, there are instances of minimum sum-of-squares clustering such that
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beginning with the M — 1 centroids of an optimal (M — 1)-partition and any
point y € R%, k-means never gets an optimal M -partition.

This impossibility result can also be expressed in an alternative way:
Theorem 1’ There is no global k-means algorithm which is optimal for M > 3
and d > 1.

5. Computational Results

Global £-means has been shown to give better results than multistart k-
means (Likas et al. 2003) in which k-means is repeated from randomly chosen
initial solutions until a time-limit is reached and the best solution kept. It is
worthwhile, however, to evaluate how close the solutions obtained are from the
optimal ones. This is done in the present section, in two ways. First, global
k-means, multistart k-means, j-means and j-means combined with Variable
Neighborhood Search are applied to three data sets with N < 150 and M < 20
for which optimal solutions are known (du Merle et al. 2000). Second, three
larger data sets from the Irvine repository (Blake and Merz 1998) and TSP-Lib
(Reinelt 1991) are considered and the same heuristics applied. All computations
are done on a Sun Ultra 2, 450 Mhz workstation.

The three data sets with known optimal solutions are:

e 4-dimensional data on 150 iris from the Gaspé peninsula (Anderson 1935;
Fisher 1936);

e 3-dimensional data on 89 postal districts in Bavaria, Germany (Spith
1985)

e 2-dimensional data on 75 points in R?, from an artificial, but much stud-
ied, example of Ruspini (1970).

Results of the first series of experiments are presented in Table ??. The
first two columns give the number N of points and M of clusters of the par-
titions. Optimal values of the sum-of-squares, determined by the algorithm of
du Merle et al. (2000) are recalled in column 3. The next four columns give %
error for global k-means (G-1 for short) and fast global k-means (G-2 for short,
i.e., the version evaluating the effect of adding a center at a point of X, apply-
ing only a first iteration of k-means then full k-means after the best addition is
found) as well as computing times for both versions. The same computing time
as taken by global k-means is given to k-means, j-means+ and VNS with in
the last case two variants: 10 restarts in 1/10 of that time for column VNS, the
same time without restarts for column VNS-1. Average results for all restarts
are given in columns 8 to 11 and best results in columns 12 to 15.
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Table 1. Comparative results for problems with known optimal solution

Optimal  Error Time Average error Error of the best Error

N M value G-I G2 G-1 G2 K-M J-M+ VNS K-M J-M+ VNS VNS-1
150 2 152.35 0.00 0.00 0.06 0.02 0.00 000 000 000 0.00 0.00 0.00
3 78.851 0.00 0.01 021 0.04  13.35 0.00 0.00 000 0.00 000 000
4 57.228 0.00 0.00 0.37 0.06  11.26 240 0.00 0.00 0.00 000 000
5 46.446 0.00 0.06 0.51 0.09 13.83 397 146 000 000 0.00 0.00
6 39.040 0.00 0.07 0.66 0.12 1621 426 0.01 000 000 000 000
7 34.298 0.02 1.55 0.85 0.15 1743 2386 000 000 0.00 0.00 0.00
8 29.989 0.01 0.25 1.05 0.19 2081 276 002 0.00 000 000 0.00
9 27.786 0.01 0.82 1.25 0.23 18.80 1.62 000 0.00 000 000 0.00°
10 25.834 0.51 1.00 1.42 0.27 1743 284 042 0.6 000 0.00 0.00
Average 0.06 042 0.71 0.13 1435 230 021 002 0.00 0.00 0.00
89 2 0.60255-1012 0.00 0.00 0.02 0.00 775 0.00 000 7.75 0.00 0.00 0.00
3 0.29451-1012 0.00 0.00 0.05 0.01 2340 0.00 7.04 20.02 0.00 0.00 0.00
4 0.10447-10'2 0.00 0.00 0.09 0.02 156.17 000 0.00 008 000 0.00 000
5 0.59762-10** 0.00 0.00 0.14 0.02 31528 0.00 000 23.58 000 0.00 0.00
6 0.35909-10** 0.00 0.00 0.19 0.03 531.44 27.70 11.06 27.79 27.65 0.00  0.00
7 0.21983-10' 0.00 0.00 0.25 0.04  832.60 44.00 7.07 6939 0.00 0.00 0.00
8 0.13385-10™ 0.00 0.00 0.33 0.05 1239.64 024 000 000 000 0.00 0.00
9 0.84237.101° 0.00 0.00 0.38 0.06 1697.17 28.59 000 3581 0.00 0.00 0.00
10 0.64465-10'° 0.00 0.00 0.44 0.07 163830 0.16 0.00 57.81 000 0.00 0.00
14 0.21155-101% 148 0.11 0.65 0.13 1922.39 1148 000 67.10 0.00 0.00 0.00
18 0.98069-10° 0.00 0.00 0.86 0.20 2703.85 5.62 1.11 244.13 0.00 0.00 0.00
22 0.54214-10° 0.00 0.00 1.12 0.29 473531 18.55 5.56 228.89 471 0.00  0.00
26 0.28223-10° 6.44 9.14 1.42 0.38 883590 6.19 0.00 10562 0.00 0.00 000
30 0.17138-10° 0.00 3.80 1.70 0.49 14032.88 8.17 0.53 17198 000 0.00 0.00
Average 0.57 0.93 0.55 0.13 2762.29 10.76 2.31 7571 231 000 000
75 2 89337.83 0.00 0.00 0.01 0.00 0.00 0.00 000 0.00 0.00,L000 0.00
3 51063.47 0.00 0.00 0.02 0.01 0.09 005 007 000 000 000 0.00
4 12881.05 0.00 0.00 0.03 0.01 14157 0.00 000 000 000 0.00 0.0
5 10126.72 0.00 0.22 0.05 0.01  109.22 6.04 238 0.00 000 0.00 0.00
6 857541 0.00 0.98 0.06 0.02  81.06 2.09 090 000 0.00 000 0.00
7 712620 0.00 1.69 0.08 0.03 6396 571 0.68 0.00 000 0.00 000
8 6149.64 0.14 1.73 0.10 0.03  48.94 432 081 027 0.00 0.14 000
9 5181.65 032 1.78 0.12 0.04  50.62 7.76 2.81 025 0.00 0.00 0.00
10 4446.28 0.38 2.73 0.15 0.05  52.83 7.22 008 029 000 0.00 0.00
15 2559.35 0.19 2.73 0.25 0.09 5881 6.06 272 502 0.00 0.00 0.00
20 172122 0.65 0.04 0.38 0.15  51.97 693 265 1027 1.75 091 0.00
25 1162.67 1.24 1.24 0.53 021  57.72 1045 174 18.81 047 0.00 0.00
30 741.83 146 3.27 0.69 029  81.97 9.97 167 2051 000 0.00 0.0
Average 034 1.26 0.19 0.07 6144 512 127 426 0.17 008 000

(i) global k-means (G-1) obtains optimal partitions for small M (up to 6 for
iris, 10 for postal districts, 7 for points in the plane) but usually not for

It appears that:

larger values;
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(ii) fast global k-means (G-2) divides the computing time of global k-means
by a factor of about 3 but at the price of a notable increase in both the
number of non-optimal partitions and the size of the errors;

(iii) results of multistart k-means are problem dependent (but always bad in
average for one descent): the iris problem is solved optimally except for
M = 10, best partitions with an even number of clusters for the postal
district problem have very large errors (up to more than 200 % !) and
partition into 7 clusters at most for the points in the plane are optimal but
errors rapidly increase for larger values of M;

(iv) j-means+ gives optimal partitions in all cases but four (although average
results for its use until a restart takes place show substantial errors);

(v) VNS always attains optimal partitions (with errors in 2 cases only if 10
runs are made with 1/10 of the time of global k-means).

The three larger data sets are:

e 9-dimensional data on 214 glass specimens for forensic identification
(Blake and Merz 1998);

e 19-dimensional data on 2310 instances drawn randomly as parts of 7 out-
doors images (Blake and Merz 1998);

e 2-dimensional data on 3038 points in the plane from a traveling salesman
problem of Reinelt (1991).

Results of this second series are presented in Table ??. Columns are
similar to those of Table ?? except that the third one contains values of the best
solutions found during our experiments instead of optimal values, which are
unknown.

It appears that, in addition to conclusions similar to those given for Ta-
ble ?7?2:

(vi) for large instances, with N > 2000, global k-means gives good results,
i.e., the best known ones when M < 20, and with moderate error other-
wise;

(vii) computing time of global k-means becomes high (up to about 6 hours per
instance) for N > 2000; reduction in this time when using fast global
k-means is now much larger and again at the price of a notable increase
in the number of suboptimal partitions and size of the errors;

(viii) j-means combined with Variable Neighborhood Search provides best known
solutions in all but a few cases in 10 times less computing time than the
global k-means.
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Table 2. Comparative results on large test instances

Bestkn. Error

Time

Average error

Error of the best

value G-1 G-2

G-1 G-2

K-M J-M+ VNS

K-M J-M+ VNS

Time
VNS-1

214 2

O 00~ AN h W

10
20
30
40
50

Average

819.63 0.00 0.00
589.03 0.00 0.00
489.04 0.00 0.00
400.26 0.01 0.07
336.06 0.00 0.07
292.25 0.00 0.13
266.50 0.09 0.00
245.35 0.00 0.40
225.19 0.00 0.00
114.65 0.78 0.00
63.25 4.11 1.42
39.50 2.27 2.97
26.78 0.31 1.30
0.58 0.49

0.06
0.13
0.22
0.32
0.43
0.55
0.69
0.84
1.00
3.26

0.37
0.90
1.53
2.24
3.16
4.09
5.18
6.54
7.63
22.14
41.39
60.29
79.52

18.08  3.26

6.70 111.28
11.32 172.56
16.83 231.78

3.86 0.16 0.06
12.13 0.00 0.00
10.67 1.41 0.00
12.72 0.63 0.00
19.73 3.38 0.01
21.46 2.38 0.00
19.32 1.69 0.00
17.80 1.75 0.20
1834 2.13 0.10
50.06 5.33
5.94
9.01
7.69

53.98 3.19

1.03 16.97
0.09 43.00
0.72 63.03
1.22 67.10
0.26 14.63

0.00 0.00 0.00
0.00 0.00
0.00 0.00
0.01 0.00
0.00 0.00
0.00
0.09
0.00
0.01

0.00
0.00
0.00

0.37
0.90
1.53
2.24
3.16
4.09
5.18
6.54
7.63
22.14
41.39
60.29
79.52
18.08

2310 2
3
4
5
6
7
8
9

10

20
30
40
50

Average

0.35606-10% 0.00 0.00
0.27416-108 0.00 0.00
0.19456-108 0.00 0.00
0.17143-108 0.00 0.00
0.15209-108 0.00 0.47
0.13404-108 0.00 0.51
0.12030-108 0.00 0.58
0.10784-108 0.00 0.64
0.97952-107 0.00 1.75
0.51283-107 0.03 0.46

97.58
198.96
313.01
497.86
707.27
981.72 70.01
1249.57 - 86.59
1509.90 104.85
1822.81 124.43
6033.26 401.95

7.92
17.38
28.46
41.05
54.82

0.35076-107 0.00 0.16 11270.80 825.71
0.27398-107 0.15 0.31 17052.50 1396.75
0.22249-107 0.21 1.06 24174.30 2112.44

0.03 0.46

5069.96 405.57

0.00
0.46
0.00
0.10
2.87
2.53
0.16
0.32
0.18
0.97

0.17

1.38
25.32
23.48
16.41
12.49
10.94
13.58
15.83
34.63
44.68
53.43
5851
23.91

0.00
0.37
0.00
0.81
247
539
6.29
6.92
3.65
3.46
5.62
4.90
432

3.40 0.67

0.40 10.80
0.43 14.33
0.35 19.65

0.00
0.00
0.00
0.00
0.81
0.00
0.00
0.00
0.00
0.00
0.51
0.00
0.00
0.10

0.00
0.00
0.00
0.00
0.60
0.00
0.17
0.00
0.63
7.29

0.00
0.00
0.78
0.95
1.14
0.65

411 047

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

9.76
19.90
31.30
49.79
70.73
98.17

124.96
150.99
182.28
603.33

0.23 1127.08
0.00 1705.25
0.00 2417.43

0.02

507.00

3038

2 0.31688-101% 0.00 0.00

3 0.21763-101° 0.00 0.00
4 0.14790-101° 0.00 0.00
5 0.11982-1019°0.00 0.00

6
7
8
9
10
20
30
40
50

Average

0.96918-10° 0.00 0.02
0.83966-10° 0.00 0.84
0.73475-10° 0.00 1.28
0.64477-10° 0.00 1.41
0.56025-10° 0.00 0.00
0.26681-102 0.01 0.42

0.17557-10° 0.00 1.48 11155.20

71.93
196.16
328.89
539.29
730.64

1012.89
1226.30
1589.68
1890.17
6412.25

473
10.78
17.63
25.67
34.76
4491
56.05
68.15
81.37

258.94
528.63

0.12548-10° 0.42 1.42 16211.00 894.52
0.98400-10% 0.07 1.18 21506.40 1335.97

0.04 0.62

4836.22 258.62

0.00
1.37
0.00
0.10
0.01
0.73
0.62
0.11
0.06
0.09
091
0.93
033
0.40

0.00
1.55
0.03
0.12
1.22
1.65
1.90
1.47
2.44
3.16
4.04
6.21
6.79
2.35

0.00
1.29
0.00
0.11
1.98
1.48
1.48
0.99
1.81
2.60
2.89
3.49
3.51
1.66

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.02
0.60
0.67
0.79
0.16

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.05
0.42
0.00
0.74
0.09

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

7.19
19.62
32.89
53.93
73.06

101.29
122.63
158.97
189.02
641.22

0.00 1115.52
0.00 1621.10
0.00 2150.64

0.00

483.62

An anonymous referee suggested that G; and G5 could be improved by
small perturbation of points of X. While it follows from Theorem 1 that this
would not guarantee optimality, it might give better solution in some cases.
For further empirical comparison of heuristics for minimum sum-of-squares

clustering see e.g. Taristano (2003) and Hansen and Mladenovié (2001a).
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Table 3. Summary of cases for Example ??

Case Interval Cardinality Centroids Errors Total
fory mi ma ma (] Cs Cs  Error

1 (-00,-150] 0 4 5 <-150 150 654 0 50000 100000 150000
2 (150,150] 1 3 5 0200 654 0 20000 100000 120000
3 (50,2501 2 2 5 50 250 654 5000 5000 100000 110000
4 (250,300] 3 1 5 100 300 654 20000 0 100000 120000
5 (300,450] 3 2 4 100 377 704 20000 11858 50000 81858
6 (450,454] 4 1 4 150 454 704 50000 0 50000 100000
7 (454,654] 4 2 3 150 504 754 50000 50000 20000 75000
8 (654,854]1 4 3 2 150 554 804 50000 20000 5000 75000
9 (854,1054] 4 4 1 150 604 854 50000 50000 0 100000
10 (1054,00) 4 5 0 150 654 >1054 50000 100000 0 150000
Optimal 33 3 100 434 754 20000 32744 20000 72744

6. Conclusions

From the theoretical point of view, a complete analysis has been made
of the conditions in which the assumption of Likas et al. (2003) holds, i.e.,
that beginning with the M — 1 centroids of an optimal (M — 1) partition there
is always an additional point y € X or y € R? to be chosen as M*" cluster
center such that k-means then yields an optimal M-partition. Results are rather
negative: if y € X there are cases for all M > 2 and d > 1 where k-means
stops with a suboptimal M -partition. If y € R? and M = 2 an adequate cluster
center exists, but the proof given is not constructive. If y € R%, M > 3and d >
1 again there are cases where k-means stops with a suboptimal partition. This
proves the impossibility of deriving an optimal incremental k-means algorithm.

From the empirical point of view, it appears that for moderate size prob-
lems, i.e., with N < 150, for which the optimal solution is known, global
k-means attains this solution for small M, i.e., M < 7. For larger values of M
global k-means makes small errors.

Considering a bit larger problems with N = 214, 2310 and 3038 leads
to similar conclusions. Moreover, the recent j-means heuristic extended by
embedding it in a Variable Neighborhood Search framework gives better results
than global k-means in equal computing time and for large M and N in 10 times
less computing time.

These properties and experiments illustrate the difficulty of obtaining an
exact solution to large minimum sum-of-squares clustering problem: when M
grows, an incremental approach does not suffice for reorganizing the current
partition sufficiently. Jump moves then appear to be necessary in order to avoid
that the effect of the new center be only local. .
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Appendix

Proof of Theorem 1.

The proof is constructive. It consists in providing an example which sat-
isfies the conditions of Theorem 1. As this theorem is an existential statement,
the result follows.

Example4 Let N = 9, d = 1, ;7 = 0, 22 = 100, z3 = 200, 4 = 300,
T5 = 454, T = 554, T7 = 654, x5 = 754, x9 = 854 and M = 3. It is easily
seen that the optimal clustering into k = 2 clusters is Cy = {z1, %2, T3, T4},
Co = {zs5, x6, T7, T3, T9 } With centroids my = 150, my = 654 and an error of
150000 (see Figure ?? (a)).

Let us now examine which partitions are obtained for all possible choices
of the additional initial point y. There are 10 cases, summarized in Table ?? and

illustrated on Figure ?2(b) to ??(k). We only discuss the three first ones, the
others being similar. We assume that points do not change cluster in case of ties
in their distances to centroids (or initial points).

If y € (—o0, —150], the new initial point is so far to the left that it cap-
tures none of the points of X. An empty cluster is thus added to the optimal
cluster for k = 2. The centroids are at < —150; 150 and 654, the errors of the
clusters are 0, 50000 and 100000 and the total error 150000 (see Figure 22(b)).

If y € (—150, 50] the new initial point captures z; only. Clusters with 1,
3 and 5 points, from left to right, are obtained. Their centroids are at 0, 200 and
654. Due to the tie-breaking rule, k-means stops. The errors of the clusters are
0, 20000 and 100000 and the total error 120000 (see Figure ??(c)).

If y € (50,250] then either y € (50, 150), it captures the first 2 points,
the leftmost cluster keeps the next 2 and the rightmost cluster remains as before;
y = 150 it coincides with m; and is useless, or y € (150, 250] and it captures
points x3 and x4, the leftmost cluster retaining points z; and z5. In both cases
(i.e., excluding y=150) the obtained clusters have, from left to right 2, 2 and
5 points. Their centroids are at 50, 250 and 654 respectively, their errors are
5000, 5000 and 100000. The total error is 110000 (see Figure ?2(d)). »

The seven other cases yield partitions with a total error greater than or
equal to 75000. Yet, consider the partition Ci = {z1,72,7z3}, Co=
{x4, 25,26}, C3 = {z7, T8, To} Which can easily be shown to be optimal. Then
the centroids of the clusters are at 100, 434 and 754, the errors of the clusters
are 20000, 32724 and 20000 respectively. The total error is 72744 (see Fig-
ure ?22(1)).

So, regardless of the initial point y chosen in addition to the two centroids
my and mg, k-means stops with an error of at least (75000 — 72744) /72744 =
3.10% of the optimum value.
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Figure 5. Example 4.
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Note that Example ?? can be modified, as was done for Example ??,
by adding points sufficiently far apart, then duplicating them and giving them
small perturbations, to build examples where global k-means does not give the
optimal partition with M > 3 and/or d > 1.
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